

臨時の特性試験の試験方法

この試験方法は、特定無線設備の技術基準適合証明等に関する規則に基づく告示(平成 16 年総務省告示第 88 号第 2 項)に基づき、一般財団法人テレコムエンジニアリングセンター様が設置する「無線設備の試験方法に関する調査検討委員会」にて策定されたものを参考に一般社団法人タコヤキが公開するものです。

一般社団法人タコヤキにおける本試験方法の運用については、測定内容、測定手順及び測定器の選定等を含めて、一般社団法人タコヤキの責任下において運用いたします。

この試験方法の内容等に関するご質問等は一般社団法人タコヤキにお問合せください。

試験方法名称「時分割・直交周波数分割多元接続方式又は時分割・シングルキャリア周波数分割多元接続方式広帯域移動無線アクセスシステムの陸上移動局に使用するための無線設備の特性試験方法」

略称「TD-OFDMA又はTD-SCFDMA広帯域移動無線アクセス陸上移動局の特性試験方法」

「証明規則第2条第1項第54号の4に掲げる無線設備(設備規則第49条の29第1項、第7項及び第8項においてその無線設備の条件が定められている陸上移動局に使用するための無線設備)」

一 一般事項

1 試験場所の環境

- (1)技術基準適合証明における特性試験の場合室内の温湿度は、JIS Z8703による常温5~35℃の範囲、常湿45~85%(相対湿度)の範囲内とする。
- (2) 認証における特性試験の場合 上記に加えて周波数の偏差については、温湿度試験及び振動試験を行う。詳細は各試験項 目を参照すること。

2 電源電圧

- (1) 技術基準適合証明における特性試験の場合 電源は、定格電圧を供給する。
- (2) 認証における特性試験の場合

電源は、定格電圧及び定格電圧±10%を供給する。ただし次の場合を除く。

- ア 外部電源から受験機器への入力電圧が±10%変動したときにおける受験機器の無線部 (電源は除く。)の回路への入力電圧の変動が±1%以下であることを確認できた場合は、 定格電圧のみで試験を行う。
- イ 電源電圧の変動幅が±10%以内の特定の変動幅内でしか受験機器が動作しない設計となっており、その旨及び当該特定の変動幅の上限値と下限値が工事設計書に記載されている場合は、定格電圧及び当該特定の変動幅の上限値及び下限値で試験を行う。

3 試験周波数と試験項目

- (1) 受験機器の発射可能な周波数が3波以下の場合は全波で全試験項目について試験を行う。
- (2) 受験機器の発射可能な周波数が4波以上の場合は、上中下の3波の周波数で全試験項目について試験を行う。
- (3) $20\,\mathrm{MH}\,\mathrm{z}$ システム、 $10\,\mathrm{MH}\,\mathrm{z}$ システム、 $5\,\mathrm{MH}\,\mathrm{z}$ システム及び2. $5\,\mathrm{MH}\,\mathrm{z}$ システム の複数の機能を有する場合はそれぞれについて試験を行う。
- (4) 2. 5 m s 、 5 m s 及び 1 0 m s と複数の送信バースト周期を有する場合はそれぞれについて試験を行う。

4 予熱時間

工事設計書に予熱時間が必要である旨が明記されている場合は、記載された予熱時間経過後に 測定する。その他の場合は、予熱時間はとらない。

5 測定器の精度と較正等

- (1) 測定値に対する測定精度は、必要な試験項目において説明する。測定器は較正されたもの を使用する必要がある。
- (2) 測定用スペクトルアナライザは、掃引方式デジタルストレージ型とする。ただし、FFT 方式のものであっても、検波モード、分解能帯域幅(ガウスフィルタ)、ビデオ帯域幅等について各試験項目の「スペクトルアナライザの設定」ができるものは、使用してもよい。

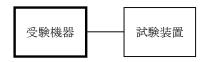
- (3) スペクトルアナライザの掃引時間を(データ点数×バースト周期)以上、検波モードをポジティブピークと設定する代わりに、掃引時間を(データ点数×バースト周期×任意の自然数)、検波モードをRMSとしてもよい。
- (4) スペクトルアナライザの検波モードは、掃引周波数幅を0Hzに設定するときに限り、R MSのかわりにサンプルを用いてもよい。
- (5) スペクトルアナライザが参照帯域幅内の電力総和のRMS値を算出する機能を有するときは、掃引時間を(データ点数×バースト周期×任意の自然数)と設定し、その算出結果を測定値としてもよい。
- (6) スペクトルアナライザのアベレージ機能として対数平均(ビデオアベレージ)を標準とする機種が多いが、対数の平均ではなく、RMS平均を使用する。

6 本試験方法の適用対象

- (1) 本試験方法はアンテナ端子(試験用端子を含む)のある設備に適用する。
- (2) 本試験方法は内蔵又は付加装置により次の機能が実現できることが望ましい。
 - ア 試験周波数に設定する機能
 - イ 周波数の偏差測定時に無変調の連続波又は、バースト波を送出する機能
 - ウ 規定のチャネルの組合せ及び数による変調がかかり最大出力状態に設定する機能
 - エ 標準符号化試験信号(ITU-T勧告O. 150による9段PN符号、15段PN符号又は23段PN符号等)による変調ができる機能
 - 注 上記機能が実現できない機器の試験方法については別途検討する。

7 その他の条件(1)

- (1) テストベンチを使用して試験を行う場合は、テストベンチが有する電気的特性も含めて測定することになるので、受験機器そのものの特性との間で差異の生じることがあることに留意する必要がある。
- (2) 時分割・直交周波数分割多元接続方式又は時分割・シングルキャリア周波数分割多元接続 方式広帯域移動無線アクセスシステムの陸上移動中継局であって基地局へ送信を行う場合 (陸上移動局と同等機能)は、本試験方法を適用する。陸上移動局へ送信を行う場合(基地局と同等機能)は、基地局等の試験方法を適用する。
- (3) 時分割・直交周波数分割多元接続方式又は時分割・シングルキャリア周波数分割多元接続 方式広帯域移動無線アクセスシステムの試験のための通信等を行う無線局のうち、陸上移動 局を模擬する無線局の場合は、本試験方法を適用する。
- (4) 受験機器の特性インピーダンスは 50Ω とする。
- (5) 結果の表示は、技術基準に定められている許容値を併記する。
- (6) 外部試験装置は、受験機器と回線接続ができ、また、試験用動作モード及び空中線電力の 制御等が可能な装置、又は、試験に必要な信号を受験機器に与える信号発生器とする。
- (7) 外部試験装置を接続しなくても送信可能なものは、フリーランの状態で測定してもよい。
- (8) 受験機器が複数の空中線端子を有する場合は、各空中線端子において測定を行う。
- (9) 複数の空中線端子を有する場合であっても同時に電波を発射しない空中線選択方式(アンテナダイバーシティ等)のときは、選択した空中線の空中線端子のみで測定を行う。ただし、空中線端子によって測定値が異なることが懸念されるときは、空中線の切り替えを行い、他の空中線端子でも測定を行う。
- (10) 複数の送信空中線を有し、空間多重方式 (MIMO) を用いる無線設備にあっては、空中線電力の試験項目は各空中線端子で測定した値の総和により、それ以外の試験項目は各空中線端子で測定した値による。ただし、別途、試験項目に規定する場合は除く。
- (11) 本試験方法は標準的な方法を定めたものであるが、これに代わる他の試験方法について


技術的に妥当であると証明された場合は、その方法で試験してもよい。

8 その他の条件(2)

- (1)複数の空中線を使用する空間多重方式及び空間分割多重方式(アダプティブアレーアンテナ)等を用いるものにあっては、技術基準の許容値が電力の絶対値で定められるものについて、各空中線端子の測定値の総和を求める。
- (2) キャリアアグリゲーション技術(二以上の搬送波を同時に用いて一体として行う無線通信の技術をいう。)を用いる場合には、一又は複数の基地局(基地局から陸上移動局へ送信する場合にあっては、シングルキャリア周波数分割多元接続方式携帯無線通信を行う基地局を含む。)と一又は複数の陸上移動局(陸上移動局から基地局へ送信する場合にあっては、シングルキャリア周波数分割多元接続方式携帯無線通信を行う陸上移動局を含む。)の間の通信(総務大臣が別に定めるものを除く)に限るものとする。
- (3) キャリアアグリゲーション技術を用いて連続しない複数の搬送波を使用する装置の試験において、他の周波数帯の搬送波の測定を行うときは、当該周波数帯の特性試験方法及び技術基準を適用する。ただし、別途、試験項目に規定する場合は除く。

二 振動試験

1 測定系統図

2 受験機器の状態

- (1) 振動試験機で加振中は、受験機器を非動作状態(電源OFF)とする。
- (2)振動試験機で加振終了後、受験機器の動作確認を行う場合は、受験機器を試験周波数に設定して通常の使用状態で送信する。

3 測定操作手順

- (1) 受験機器を取付治具(受験機器を通常の装着状態と等しくする器具)等により、振動試験機の振動板に固定する。
- (2)振動試験機により受験機器に振動を加える。ただし、受験機器に加える振動の振幅、振動数及び方向は次のア及びイの条件に従い、振動条件の設定順序は任意でよい。
 - ア 全振幅3mm、最低振動数(注1)から毎分500回までの振動を上下、左右及び前後のそれぞれ15分間(振動数の掃引周期は10分とし、振動数を掃引して「最低振動数→毎分500回→最低振動数」の順序で振動数を変えるものとする。すなわち、15分間で1.5周期の振動数の掃引を行う。)
 - 注1 最低振動数は、振動試験機の設定可能な最低振動数とする。ただし、毎分300回 以下とする。
 - イ 全振幅1 mm、振動数毎分500回から1800回までの振動を上下、左右及び前後のそれぞれ15分間(振動数の掃引周期は10分とし、振動数を掃引して「毎分 500回→毎分1800回→毎分500回」の順序で振動数を変えるものとする。すなわち、15分間で1.5周期の振動数の掃引を行う。)
- (3) 振動条件は上記(2) にかかわらず、次の条件でもよい。

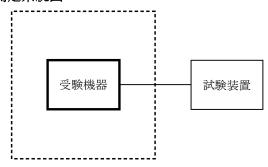
周波数	ASD(Acceleration Spectral Density)ランダム振動
5Hz から 20Hz	0.96 m 2/s 3

20Hz から500Hz 20Hz では 0.96m2/s3 。それ以上の周波数では-3dB/0ctave

このランダム振動を上下、左右及び前後(設定順序は任意)でそれぞれ30分間行う。

(4) 上記(2) 又は(3) の振動を加えた後、規定の電源電圧(注2) を加えて受験機器を動作させる。

注2 規定の電源電圧は、「一般事項」の「2電源電圧(2)」を参照すること。


(5) 試験装置を用いて受験機器の周波数を測定する。周波数の具体的な測定方法は、「周波数の 偏差」を参照すること。

4 その他の条件

- (1) 本試験項目は、認証の試験の場合のみに行う。
- (2) 本試験項目は、移動せず、かつ振動しない物体に固定して使用されるものであり、その旨が工事設計書に記載されている場合には行わない。

三 温湿度試験

1 測定系統図

温湿度試験槽(恒温槽)

2 受験機器の状態

- (1) 規定の温湿度状態に設定して、受験機器を温湿度試験槽内で放置しているときは、受験機器を非動作状態(電源OFF)とする。
- (2) 規定の放置時間経過後(湿度試験にあっては常温常湿の状態に戻した後)、受験機器の動作確認を行う場合は、受験機器を試験周波数に設定して通常の使用状態で送信する。

3 測定操作手順

(1) 低温試験

ア 受験機器を非動作状態として温湿度試験槽内に設置し、この状態で温湿度試験槽内の温度を低温 $(0^{\circ}\mathbb{C}, -10^{\circ}\mathbb{C}, -20^{\circ}\mathbb{C})$ を 受験機器の仕様の範囲内で最低のもの)に設定する。

イ この状態で1時間放置する。

ウ 上記 イ の時間経過後、温湿度試験槽内で規定の電源電圧(注1)を加えて受験機器を 動作させる。

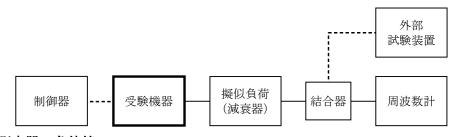
注1 規定の電源電圧は、「一般事項」の「2電源電圧(2)」を参照すること。

エ 試験装置を用いて受験機器の周波数を測定する。(注2) 注2 周波数の具体的な測定方法は、「周波数の偏差(1)」を参照すること。

(2) 高温試験

ア 受験機器を非動作状態として温湿度試験槽内に設置し、この状態で温湿度試験槽内の温度を高温(40 \mathbb{C} 、50 \mathbb{C} 、60 \mathbb{C} のうち受験機器の仕様の範囲内で最高のもの)、かつ常湿に設定する。

- イ この状態で1時間放置する。
- ウ 上記 イ の時間経過後、温湿度試験槽内で規定の電源電圧(注1)を加えて受験機器を 動作させる。
- エ 試験装置を用いて受験機器の周波数を測定する。(注2)
- (3) 湿度試験
 - ア 受験機器を非動作状態として温湿度試験槽内に設置し、この状態で温湿度試験槽内の温度を35℃に、相対湿度95%又は受験機器の仕様の最高湿度に設定する。
 - イ この状態で4時間放置する。
 - ウ 上記 イ の時間経過後、温湿度試験槽の設定を常温常湿の状態に戻し、結露していない ことを確認した後、規定の電源電圧(注1)を加えて受験機器を動作させる。
 - エ 試験装置を用いて受験機器の周波数を測定する。(注2)


4 その他の条件

- (1) 本試験項目は認証の試験の場合のみに行う。
- (2) 本試験項目は常温 (5 \mathbb{C} ~35 \mathbb{C})、常湿 (45%~85% (相対湿度)) の範囲内の環境下でのみ使用される旨が工事設計書に記載されている場合には行わない。
- (3) 使用環境の温湿度範囲について、温度又は湿度のいずれか一方が常温又は常湿の範囲より 狭く、かつ、他方が常温又は常湿の範囲より広い場合であって、その旨が工事設計書に記載 されている場合には、当該狭い方の条件を保った状態で当該広い方の条件の試験を行う。
- (4) 常温、常湿の範囲を超える場合であっても、3 (1) から (3) の範囲に該当しないものは温湿度試験を省略することができる。

四 周波数の偏差(1)

適用範囲:一の搬送波を使用する装置(占有周波数帯幅の許容値が 2. 5 MH z 以上のもの) に適 用する。

1 測定系統図

2 測定器の条件等

- (1) 周波数計としては、カウンタ、スペクトルアナライザ又は波形解析器を使用する。
- (2) 周波数計の測定確度は、規定の許容偏差の1/10以下の確度とする。

3 受験機器の状態

- (1) 外部試験装置等により試験周波数及び最大出力に設定し、連続送信状態とする。
- (2) 無変調の状態で連続送信する。
- (3) これができない場合、無変調波の継続的バースト送出状態とする。

4 測定操作手順

- (1) 無変調波(連続又は継続的バースト)として、周波数計で測定する。
- (2) 複数の空中線端子を有する場合は、それぞれの空中線端子において測定する。

5 結果の表示

(1) 結果は、測定値をMHz単位で表示するとともに、測定値の割当周波数に対する偏差を百万分率(10-6)の単位で(+)又は(-)の符号を付けて表示する。

(2) 複数の空中線端子を有する場合は、それぞれの空中線端子での測定値の内、最も偏差の大きなものを表示する他、参考としてそれぞれの空中線端子の測定値も表示する。

6 その他の条件

- (1) テストベンチで試験する場合は、テストベンチの基準発振器等の周波数偏差も含めて測定 していることに留意する必要がある。
- (2) 周波数の偏差に影響がない場合は、受験機器の空中線電力を低下させて試験を行ってもよい。
- (3) 複数の空中線端子を有する場合であっても、共通の基準発振器に位相同期しているか、共通のクロック信号等を用いており、複数の空中線端子の周波数の偏差が同じになることが証明される場合は、一の代表的な空中線端子の測定結果を測定値としてもよい。
- (4)変調を停止することが困難な場合であって、スペクトルアナライザによる周波数測定が行えるような特徴的なスペクトル又は、特徴的なディップが観測される場合、信号発生器(シンセサイザ方式とする)を用いた方法で周波数を測定してもよい。すなわち、信号発生器の信号を被試験信号と同時に(又は切り替えて)スペクトルアナライザで観測し、信号発生器の周波数を画面上の特徴的なスペクトル又は、ディップの位置に合わせ、その時の信号発生器の周波数から中心周波数を換算し測定値とする。なお、周波数の換算に用いる値は、特徴的なスペクトル又は、ディップ周波数と中心周波数の関係が証明できる書面による。
- (5)(4)において、スペクトルアナライザによる周波数測定が行えるような特徴的なスペクトル又は、特徴的なディップの観測が困難な場合において、試験状態として特定のサブキャリアのみを送信する状態又は、送信しない状態としてもよい。

五 周波数の偏差(2)

適用範囲:キャリアアグリゲーション技術を用いて連続する二の搬送波を同時に使用する装置に適 用する。

1 測定系統図

「周波数の偏差(1)」を参照すること。

2 測定器の条件等

「周波数の偏差(1)」を参照すること。

- 3 受験機器の状態
 - (1) キャリアアグリゲーション技術を用いて、連続する二の搬送波をそれぞれ送信する。
 - (2) その他は、「周波数の偏差(1)」を参照すること。
- 4 測定操作手順

各搬送波について、周波数を測定する。

5 結果の表示

「周波数の偏差(1)」を参照すること。

- 6 その他の条件
 - (1) 3 (1) において、連続する二の搬送波を送信し周波数が測定できる測定器を用いる場合は、同時に送信した状態で測定してよい。
 - (2) その他については「周波数の偏差(1)」を参照すること。

六 周波数の偏差(3)

適用範囲:キャリアアグリゲーション技術を用いて連続しない複数の搬送波を同時に使用する装置 に適用する。

1 測定系統図

「周波数の偏差(1)」を参照すること。

2 測定器の条件等

「周波数の偏差(1)」を参照すること。

3 受験機器の状態

- (1) キャリアアグリゲーション技術を用いて、連続しない複数の搬送波をそれぞれ送信する。
- (2) その他は、「周波数の偏差(1)」を参照すること。

4 測定操作手順

各搬送波について、周波数を測定する。

5 結果の表示

「周波数の偏差(1)」を参照すること。

6 その他の条件

- (1) 3 (1) において、連続しない複数の搬送波を送信し周波数が測定できる測定器を用いる場合は、同時に送信した状態で測定してよい。
- (2) その他については「周波数の偏差(1)」を参照すること。

七 周波数の偏差(4)

適用範囲:一の搬送波を送信する送信装置(占有周波数帯幅の許容値が1.4MHzのもの)に適 用する。

1 測定系統図

「周波数の偏差(1)」を参照すること。

2 測定器の条件等

「周波数の偏差(1)」を参照すること。

3 受験機器の状態

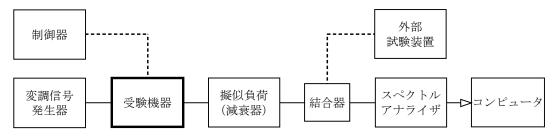
「周波数の偏差(1)」を参照すること。

4 測定操作手順

「周波数の偏差(1)」を参照すること。

5 結果の表示

「周波数の偏差(1)」を参照すること。


6 その他の条件

「周波数の偏差(1)」を参照すること。

八 占有周波数带幅(1)

適用範囲:一の搬送波を使用する装置(占有周波数帯幅の許容値が2.5MHz以上のもの)に適用する。

1 測定系統図

2 測定器の条件等

(1) スペクトルアナライザは以下のように設定する。

中心周波数

搬送波周波数

掃引周波数幅 許容値の約2~3.5倍

分解能帯域幅 許容値の約1%以下

ビデオ帯域幅 分解能帯域幅の3倍程度

Y軸スケール 10dB/Div

入力レベル 搬送波レベルがスペクトルアナライザの雑音レベルより

50dB以上高いこと

データ点数 400点以上

掃引時間1 サンプル当たり 1 バースト以上(注1)掃引モード連続掃引(波形が変動しなくなるまで)

検波モード ポジティブピーク 表示モード マックスホールド

注1 (データ点数×バースト周期)以上とする。

(2) スペクトルアナライザの測定値は、外部又は内部のコンピュータで処理する。

3 受験機器の状態

(1) 外部試験装置等により試験信号を加える。

- (2) 試験周波数に設定し、占有周波数帯幅が最大となるようなバースト送信状態とし、最大出力状態となるように設定する。
- (3)変調符号は、標準符号化試験信号で変調する。標準符号化試験信号に設定できない場合 は、通常運用状態において占有周波数帯幅が最大となる変調符号にする。
- (4) 複数の空中線端子を有する場合は、それぞれの空中線端子ごとに通常運用状態において占 有周波数帯幅が最大となる変調符号にする。

4 測定操作手順

- (1) スペクトルアナライザの設定を2(1)とする。
- (2)表示に変化が認められなくなるまで掃引を繰返した後、全データについて、dBm値を電力次元の真数(相対値でよい)に変換する。
- (3) 全データの電力総和を求め、「全電力」として記憶する。
- (4) 最低周波数のデータから順次上に電力の加算を行い、この値が「全電力」の0.5%となる限界データ点を求める。その限界点を周波数に変換して「下限周波数」として記憶する。
- (5) 最高周波数のデータから順次下に電力の加算を行い、この値が「全電力」の0.5%となる限界データ点を求める。その限界点を周波数に変換して「上限周波数」として記憶する。
- (6) 占有周波数帯幅は、「上限周波数」-「下限周波数」として求める。
- (7) 複数の空中線端子を有する場合は、それぞれの空中線端子において測定する。

5 結果の表示

- (1) 上で求めた占有周波数帯幅をMHz単位で表示する。
- (2) 複数の空中線端子を有する場合は、それぞれの空中線端子での測定値の内、最も大きなものを表示する他、参考としてそれぞれの空中線端子の測定値も表示する。

6 その他の条件

- (1) 3 (2) において送信バースト長が可変できる場合は、原則として最も短い送信バースト長に設定する。
- (2) 3 (2) に規定する占有周波数帯幅が最大となる状態の特定が困難な場合は、推定される 複数の送信条件で測定を行う。

九 占有周波数带幅(2)

適用範囲:キャリアアグリゲーション技術を用いて連続する二の搬送波を同時に使用する装置に適

用する。

1 測定系統図

「占有周波数帯幅(1)」を参照すること。

2 測定器の条件等

「占有周波数帯幅 (1)」を参照すること。ただし、スペクトルアナライザの中心周波数を送信 周波数帯域(同時に送信する連続する二の搬送波の送信周波数帯域を合わせたものをいう。)の中 心周波数とする。

3 受験機器の状態

- (1) キャリアアグリゲーション技術を用いて、連続する二の搬送波を同時に送信する。
- (2) その他は、「占有周波数帯幅(1)」を参照すること。

4 測定操作手順

- (1)連続する二の搬送波について、占有周波数帯幅を測定する。
- (2) 測定手順は「占有周波数帯幅 (1)」を参照すること。ただし、スペクトルアナライザの設定で、「搬送波周波数」を「送信周波数帯幅の中心周波数」と読み替える。

5 結果の表示

「占有周波数帯幅(1)」を参照すること。

6 その他の条件

「占有周波数帯幅(1)」を参照すること。

十 占有周波数帯幅(3)

適用範囲:キャリアアグリゲーション技術を用いて連続しない複数の搬送波を同時に使用する装置 に適用する。

1 測定系統図

「占有周波数帯幅(1)」を参照すること。

2 測定器の条件等

「占有周波数帯幅(1)」を参照すること。

3 受験機器の状態

- (1) キャリアアグリゲーション技術を用いて、連続しない複数の搬送波を同時に送信する。
- (2) その他は、「占有周波数帯幅(1)」を参照すること。

4 測定操作手順

- (1) 各搬送波について、占有周波数帯幅を測定する。
- (2) 測定手順は「占有周波数帯幅(1)」を参照すること。

5 結果の表示

「占有周波数帯幅 (1)」を参照すること。

6 その他の条件

「占有周波数帯幅(1)」を参照すること。

十一 占有周波数带幅(4)

適用範囲:一の搬送波を送信する送信装置(占有周波数帯幅の許容値が1.4MHzのもの)に適用する。

1 測定系統図

「占有周波数帯幅(1)」を参照すること。

2 測定器の条件等

「占有周波数帯幅(1)」を参照すること。

3 受験機器の状態

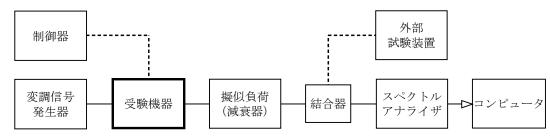
「占有周波数帯幅(1)」を参照すること。

4 測定操作手順

「占有周波数帯幅(1)」を参照すること。

5 結果の表示

「占有周波数帯幅(1)」を参照すること。


6 その他の条件

「占有周波数帯幅(1)」を参照すること。

十二 スプリアス発射又は不要発射の強度(帯域外領域)(1)

適用範囲:一の搬送波を使用する装置(占有周波数帯幅の許容値が2.5MHz以上のもの)に適用する。

1 測定系統図

2 測定器の条件等

(1) 不要発射の強度の最大値探索時のスペクトルアナライザの設定は次のようにする。

掃引周波数幅 (注1)

分解能帯域幅 1 MH z

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 1サンプル当たり1バースト以上(注2)

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数 400点以上

掃引モード 単掃引

検波モード ポジティブピーク

注1 チャネル間隔が2.5MHzのもの

搬送波周波数± (3. 75MHz~6. 25MHz)

チャネル間隔が 5MHzのもの

搬送波周波数± (7.5MHz~12.5MHz)

チャネル間隔が10MHzのもの

搬送波周波数± (15MHz~20MHz)

搬送波周波数± (20MHz~25MHz)

チャネル間隔が20MHzのもの

搬送波周波数± (30MHz~35MHz)

搬送波周波数± (35MHz~50MHz)

注2 (データ点数×バースト周期)以上とすることができる。

(2) 不要発射の強度測定時のスペクトルアナライザの設定は次のようにする。

中心周波数 測定操作手順に示す周波数

掃引周波数幅 OHz

分解能帯域幅 1 MH z

ビデオ帯域幅 分解能帯域幅の3倍程度

掃引時間 測定精度が保証される最小時間

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数 400点以上

掃引モード単掃引検波モードRMS

(3) 搬送波周波数近傍の不要発射探索時のスペクトルアナライザの設定は次のようにする。

 掃引周波数幅
 (注3)

 分解能帯域幅
 30kHz

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される最小時間

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数 400点以上

掃引モード 単掃引

検波モードポジティブピーク

注3 搬送波周波数近傍は次の範囲とする。

チャネル間隔 搬送波周波数近傍

2. 5MHz 搬送波周波数± (3. 75MHz~6. 25MHz)
 5MHz 搬送波周波数± (7. 5MHz~12. 5MHz)

(4) 搬送波周波数近傍の不要発射振幅測定時のスペクトルアナライザの設定は次のようにする。

中心周波数 不要発射周波数 (探索された周波数) (注4)

 掃引周波数幅
 1 MH z

 分解能帯域幅
 3 0 k H z

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される最小時間

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数 400点以上

掃引モード単掃引検波モードRMS

注4 不要発射周波数(探索された周波数)が注3の境界周波数から500kHz以内の場合は、中心周波数を境界周波数から500kHzだけ離れた周波数とする。

3 受験機器の状態

- (1) 外部試験装置等により試験信号を加える。
- (2) 試験周波数に設定し、バースト送信状態(注5)とする。

注5 送信バースト長を可変する場合は送信バースト時間が最も短い時間に設定する。

- (3) 電力制御を最大出力とし、変調符号は、標準符号化試験信号で変調する。標準符号化試験信号に設定できない場合は、通常運用状態において占有周波数帯幅が最大となる変調符号にする。
- (4) 複数の空中線端子を有する場合は、それぞれの空中線端子ごとに電力制御を最大出力とし

て測定するほか、実運用状態で空中線電力の総和が最大となる状態として同時に送信状態となる全ての空中線端子を結合して測定する。

4 測定操作手順

- (1) スペクトルアナライザを2(1) のように設定する。
- (2) 2 (1) の各掃引周波数幅について掃引し、それぞれの帯域での電力の最大値を求める。 探索した値が許容値を満足する場合は、2 (2) の測定は行わず、求めた値を測定値とす る。
- (3) 探索した値が許容値を超えた場合、最大値が得られた周波数でスペクトルアナライザを 2 (2) のように設定しバースト内平均値を求め測定値とする。
- (4)(3)の測定のうち、チャネル間隔が2.5MHz及び5MHzの場合に搬送波周波数近傍の範囲において、分解能帯域幅の選択度特性により許容値を超える場合は、(5)以降の測定を行う。
- (5) スペクトルアナライザの設定を 2 (3) として掃引し、搬送波周波数近傍の不要発射を探索する。
- (6) 搬送波周波数近傍の範囲で探索した不要発射の (振幅測定値+分解能帯域幅換算値(注
 - 6)) が許容値以下の場合、(振幅測定値+分解能帯域幅換算値)を測定値とする。

注6 (分解能帯域幅換算値) = 101 o g (参照帯域幅/測定時の分解能帯域幅)

分解能帯域幅換算值 : 15.2dB

- (7)搬送波周波数近傍の範囲で探索した不要発射の(振幅測定値+分解能帯域幅換算値)が許容値を超える場合、許容値を超える周波数において、次の(8)から(11)の手順で詳細測定を行う。
- (8) スペクトルアナライザを2(4) のように設定する。スペクトルアナライザの中心周波数は、(7) において許容値を超える各周波数(注4) とする。
- (9) スペクトルアナライザを掃引して、全データ点の値をコンピュータの配列変数に取り込む。
- (10) 全データについて、dB値を電力次元の真数に変換する。
- (11) 全データの電力総和 (P_s) を求め (注7)、 P_s にバースト時間率 (注8) の逆数を乗じた値を測定値とする。
 - 注7 電力総和の計算は以下の式による。ただし、参照帯域幅内のRMS値が直接求められるスペクトルアナライザの場合は、バースト時間率(注8)の逆数を乗じた値を測定値としてもよい。

$$P_{s} = \left(\sum_{i=1}^{n} E_{i}\right) \times \frac{S_{W}}{RBW \times k \times n}$$

P s : 各周波数での参照帯域幅内の電力総和の測定値(W)

E i:1 サンプルの測定値(W)

SW:掃引周波数幅(MHz)

n :参照帯域幅内のサンプル点数

k : 等価雑音帯域幅の補正値

RBW:分解能帯域幅(MHz)

注8 バースト時間率= (電波を発射している時間/バースト周期)

(12) 複数の空中線端子を有する場合は、それぞれの空中線端子において測定する。

5 結果の表示

(1) 4で求めた結果は、技術基準の異なる帯域ごとに最大となる1波をdBm/MHz単位で

表示する。

(2) 複数の空中線端子を有する場合は、空中線端子を結合して測定した値に対し、結合器等の減衰量を補正して表示する。また、それぞれの空中線端子の測定値を求めた場合は、各周波数ごとの総和を表示する他、参考としてそれぞれの空中線端子ごとの測定値も表示する。

6 その他の条件

- (1) 2の搬送波周波数は、割当周波数とする。
- (2) スペクトルアナライザのダイナミックレンジが不足する場合、搬送波と帯域外領域における不要発射の強度の相対測定において基準レベルを変更して測定する方法がある。ただしスペクトルアナライザに過大な信号が入力されないよう注意が必要である。
- (3)送信信号をサンプリングして取り込み、FFT処理により周波数領域に変換して帯域外領域における不要発射の強度を求める方法もある。
- (4) 複数の空中線端子を有する場合は、空中線端子を結合して測定することとしているが、疑 義がある場合は、それぞれの空中線端子において測定する。
- (5)(4)の測定を行った場合において、5(2)では、各周波数ごとにおける総和を表示することとしているが、それぞれの空中線端子の測定値が、許容値を空中線本数(注9)で除した値を超える周波数において1MHz帯域内の値の総和を求める。なお、全ての空中線端子において許容値を空中線本数で除した値を下回る場合は、それぞれの測定帯域において最大の測定値となる空中線端子の測定値に空中線本数を乗じた値を表示してもよい。
 - 注9 空中線本数は、同時に電波を発射する空中線の本数(ストリーム数等)であって、空間ダイバーシティ等で切り替える空中線の本数を含まない。
- (6) 3 (4) において、空中線端子を結合する方法は、隣接チャネル漏洩電力の項目と同じ方法とする。

十三 スプリアス発射又は不要発射の強度(帯域外領域)(2)

適用範囲:キャリアアグリゲーション技術を用いて連続する二の搬送波を同時に使用する装置に適 用する。

1 測定系統図

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

2 測定器の条件等

(1)「スプリアス発射又は不要発射の強度(帯域外領域)(1)」2(1)の掃引周波数帯幅の設定はチャネル間隔の組合せにより次のとおりとする。

チャネル間隔の組合せが 5MHzと5MHzのもの

送信周波数帯域の中心周波数± (9.9MHz~14.7MHz)

送信周波数帯域の中心周波数± (14.7MHz~19.7MHz)

チャネル間隔の組合せが 5MHzと10MHzのもの

送信周波数帯域の中心周波数± (12.475MHz~22.425MHz)

送信周波数帯域の中心周波数± (22.425MHz~27.425MHz)

チャネル間隔の組合せが 10MHzと10MHzのもの

送信周波数帯域の中心周波数± (14.95MHz~29.85MHz)

送信周波数帯域の中心周波数± (29.85MHz~34.85MHz)

チャネル間隔の組合せが 5MHzと20MHzのもの

送信周波数帯域の中心周波数± (17.475MHz~37.425MHz)

送信周波数帯域の中心周波数± (37.425MHz~42.425MHz)

チャネル間隔の組合せが 10MHzと20MHzのもの

送信周波数帯域の中心周波数± (19.95MHz~44.85MHz)

送信周波数帯域の中心周波数± (44.85MHz~49.85MHz)

チャネル間隔の組合せが 20MHzと20MHzのもの

送信周波数帯域の中心周波数± (24.9MHz~59.7MHz)

送信周波数帯域の中心周波数± (59.7MHz~64.7MHz)

(2) その他は「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

3 受験機器の状態

- (1) キャリアアグリゲーション技術を用いて、連続する二の搬送波を同時に送信する。
- (2) その他は、「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

4 測定操作手順

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

5 結果の表示

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

6 その他の条件

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

十四 スプリアス発射又は不要発射の強度(帯域外領域)(3)

適用範囲:キャリアアグリゲーション技術を用いて連続しない複数の搬送波を同時に使用する装置 に適用する。

1 測定系統図

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

2 測定器の条件等

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

- 3 受験機器の状態
 - (1) キャリアアグリゲーション技術を用いて、連続しない複数の搬送波を同時に送信する。
 - (2) その他は、「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。
- 4 測定操作手順

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

5 結果の表示

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

6 その他の条件

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

十五 スプリアス発射又は不要発射の強度(帯域外領域)(4)

適用範囲:一の搬送波を送信する送信装置(占有周波数帯幅の許容値が1.4MHzのもの)に適用する。

1 測定系統図

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

2 測定器の条件等

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。ただし、通信の相手方となる基地局のチャネル間隔と同じチャネル間隔に応じた条件を適用する。

3 受験機器の状態

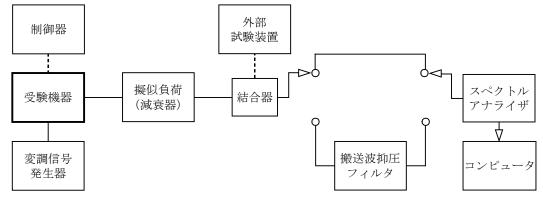
「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

4 測定操作手順

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

5 結果の表示

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。


6 その他の条件

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

十六 スプリアス発射又は不要発射の強度(スプリアス領域)(1)

適用範囲:一の搬送波を使用する装置(占有周波数帯幅の許容値が2.5MHz以上のもの)に適用する。

1 測定系統図

2 測定器の条件等

- (1) 搬送波抑圧フィルタは、必要に応じて使用する。
- (2) 不要発射探索時のスペクトルアナライザの設定は次のようにする。

掃引周波数幅 (注1) 分解能帯域幅 (注1)

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 1サンプル当たり1バースト以上(注2)

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数 400点以上

掃引モード 単掃引

検波モード ポジティブピーク

注1 不要発射探索時の設定は以下の通りとする。不要発射測定時の分解能帯域幅は、測定する不要発射周波数が以下の周波数で示した分解能帯域幅に設定する。

掃引周波数幅 : 9kHz~ 150kHz

分解能帯域幅 : 1 k H z

掃引周波数幅 : 150kHz~ 30MHz

分解能帯域幅 : 10kHz

掃引周波数幅 : 30MHz~1,000MHz

分解能帯域幅 : 100kHz

掃引周波数幅 : 1, 000MHz~2, 505MHz

分解能帯域幅 : 1 MH z

掃引周波数幅 : 2, 505MHz~2, 530MHz

分解能帯域幅 : 1 MHz

掃引周波数幅 : 2, 530MHz~2, 535MHz

分解能帯域幅 : 1 MHz

掃引周波数幅 : 2, 5 3 5 MH z ~ 2, 6 5 5 MH z

分解能带域幅 : 1 MHz

掃引周波数幅 : 2, 655MHz~13.5GHz(注3)

分解能帯域幅 : 1 MHz

注2 (データ点数×バースト周期)以上とすることができる。ただし、検出される信号の レベルが最大3dB小さく測定される場合があるので注意すること。

- 注3 2,655MHzを超える周波数範囲の測定において、スプリアス領域と帯域外領域の技術基準が重なる範囲は、スプリアス領域の測定範囲から除外する。
- (3) 不要発射振幅測定時のスペクトルアナライザの設定は次のようにする。

中心周波数探索した不要発射周波数

 掃引周波数幅
 O H z

 分解能帯域幅
 (注1)

ビデオ帯域幅 分解能帯域幅の3倍程度

掃引時間 測定精度が保証される最小時間

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数 400点以上

掃引モード単掃引検波モードRMS

(4) 特定周波数帯の境界周波数近傍の不要発射探索時のスペクトルアナライザの設定は次のようにする。

掃引周波数幅 (注4) 分解能帯域幅 30kHz

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される最小時間

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数 400点以上

掃引モード 単掃引

検波モード ポジティブピーク

注4 特定周波数帯の境界周波数近傍は次の範囲とする。

2, $505MHz \sim 2$, 515MHz

2, $525MHz \sim 2$, 535MHz

チャネル間隔が2.5MHzの場合は搬送波周波数±(6.25MHz~10MHz)

(5) 特定周波数帯の境界周波数近傍の不要発射振幅測定時のスペクトルアナライザの設定は次のようにする。

中心周波数 不要発射周波数 (探索された周波数) (注5)

 掃引周波数幅
 1 MH z

 分解能帯域幅
 3 0 k H z

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される最小時間

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数 400点以上

掃引モード単掃引検波モードRMS

注5 不要発射周波数(探索された周波数)が境界周波数から500kHz以内の場合は、 中心周波数を境界周波数から500kHzだけ離れた周波数とする。

3 受験機器の状態

(1)試験周波数に設定し、バースト送信状態(注6)とする。 注6 送信バースト長を可変する場合は送信バースト時間が最も長い時間に設定する。

- (2) 通常の変調状態で変調をかけ、最大出力状態となるように設定する。
- (3) 複数の空中線端子を有する場合は、それぞれの空中線端子ごとに電力制御を最大出力となるように設定する。

4 測定操作手順

(1) スペクトルアナライザの設定を 2 (2) とし、各掃引周波数幅毎に不要発射を探索する。 2,5 35 MH z \sim 2,6 55 MH z を探索する場合、搬送波周波数 \pm 6.2 5 MH z 未満、 \pm 12.5 MH z 未満、 \pm 25 MH z 未満又は \pm 50 MH z 未満(注 7) の範囲を探索から除外する。

注7 チャネル間隔1.08MHz:通信の相手方となる基地局のチャネル間隔と同じチャネル間隔に応じた周波数範囲

チャネル間隔2. 5 MH z : 搬送波周波数±6. 2 5 MH zチャネル間隔5 MH z : 搬送波周波数±12. 5 MH zチャネル間隔1 0 MH z : 搬送波周波数±25 MH zチャネル間隔2 0 MH z : 搬送波周波数±50 MH z

- (2) 探索した不要発射の振幅値が許容値以下の場合、探索値を測定値とする。
- (3) 探索した不要発射の振幅値が許容値を超えた場合スペクトルアナライザの中心周波数の設定精度を高めるため、周波数掃引幅を100MHz、10MHz及び1MHzのように分解能帯域幅の10倍程度まで順次狭くして、不要発射周波数を求める。次に、スペクトルアナライザの設定を上記2(3)とし、掃引終了後、バースト内の全データ点の値をコンピュータに取り込む。バースト内の全データ(dBm値)を電力の真数に変換した値を平均化処理し(すなわちバースト内の全データの総和をバースト内のデータ数で除し)それをdBm値に変換し、不要発射の振幅値とする。
- (4)(3)の測定のうち、特定周波数帯(2,505MHz \sim 2,535MHz σ 境界周波数近傍(注4)及びチャネル間隔2.5MHz σ 場合の搬送波周波数近傍(注4))の範囲において、分解能帯域幅の選択度特性により許容値を超える場合は、(5)以降の測定を行う。
- (5) スペクトルアナライザの設定を2(4)として掃引し、特定周波数帯の境界周波数近傍の不要発射を探索する。
- (6) 特定周波数帯の境界周波数近傍の範囲で探索した不要発射の(振幅測定値+分解能帯域幅 換算値(注8)) が許容値以下の場合、(振幅測定値+分解能帯域幅換算値)を測定値とす る。

注8 (分解能帯域幅換算値) = 1010g (参照帯域幅/測定時の分解能帯域幅) 分解能帯域幅換算値 : 15.2dB

- (7)特定周波数帯の境界周波数近傍の範囲で探索した不要発射の(振幅測定値+分解能帯域幅 換算値)が許容値を超える場合、許容値を超える周波数において、次の(8)から(11) の手順で詳細測定を行う。
- (8)スペクトルアナライザを2(5)のように設定する。スペクトルアナライザの中心周波数

は、(7)において許容値を超える各周波数(注5)とする。

- (9) スペクトルアナライザを掃引して、全データ点の値をコンピュータの配列変数に取り込む。
- (10) 全データについて、dB値を電力次元の真数に変換する。
- (11) 全データの電力総和 (Ps) を求め (注9)、Psにバースト時間率 (注10) の逆数を乗じた値を測定値とする。
 - 注9 電力総和の計算は以下の式による。ただし、参照帯域幅内のRMS値が直接求められるスペクトルアナライザの場合は、バースト時間率(注10)の逆数を乗じた値を測定値としてもよい。

$$P_{s} = \left(\sum_{i=1}^{n} E_{i}\right) \times \frac{S_{W}}{RBW \times k \times n}$$

Ps: 各周波数での参照帯域幅内の電力総和の測定値 (W)

E i : 1 サンプルの測定値(W)

SW:掃引周波数幅(MHz)

n :参照帯域幅内のサンプル点数

k : 等価雑音帯域幅の補正値

RBW:分解能帯域幅(MHz)

注10 バースト時間率= (電波を発射している時間/バースト周期)

(12) 複数の空中線端子を有する場合は、それぞれの空中線端子において測定する。

5 結果の表示

- (1) 結果は、上記で測定した不要発射の振幅値を、技術基準が異なる各帯域ごとに不要発射電力の最大の1波を周波数とともに、技術基準で定められる単位で表示する。
- (2) 多数点を表示する場合は、許容値の帯域毎にレベルの降順に並べ周波数とともに表示する。
- (3) 複数の空中線端子を有する場合は、それぞれの空中線端子の測定値において各周波数ごと (参照帯域幅内)における総和を技術基準で定められる単位で周波数とともに表示する他、 参考としてそれぞれの空中線端子ごとに最大の1波を技術基準で定められる単位で周波数と ともに表示する。

6 その他の条件

- (1) 2 (2) において、不要発射の探索周波数範囲は9kHzから13.5GHzまでとしているが、平成16年総務省告示第88号(特性試験の試験方法を定める件)の附則において、この告示の施行の日から当分の間、スプリアス領域における不要発射の強度の測定を行う周波数範囲の下限周波数を30MHzとしているので、これを準用してもよい。ただし疑義がある場合はこの周波数範囲を超えて測定を行う。
- (2) 測定結果が許容値に対し3dB以内の場合は、当該周波数におけるスペクトルアナライザのY軸スケールの絶対値を電力計及び信号発生器を使用して確認すること。
- (3) 搬送波抑圧フィルタを使用する場合、フィルタの減衰領域内の不要発射を正確に測定できないことがある。この場合は、測定値を補正する必要がある。
- (4) 5 (3) において、各周波数ごとにおける総和を表示することとしているが、それぞれの空中線端子の測定値が、許容値を空中線本数(注11) で除した値を超える周波数において参照帯域幅内の値の総和を求める。なお、全ての空中線端子において許容値を空中線本数で除した値を下回る場合は、それぞれの測定帯域において最大の測定値となる空中線端子の測定値に空中線本数を乗じた値を表示してもよい。

- 注11 空中線本数は、同時に電波を発射する空中線の本数(ストリーム数等)であって、 空間ダイバーシティ等で切り替える空中線の本数を含まない。
- (5) 4 (11) においてRMS値が直接求められるスペクトルアナライザを用いる場合は、 受験機器の送信バースト長が最大となる条件と送信バースト長が最小となる条件の両方に おいて測定し、不要発射が最大となるバースト長での値を測定値とする。

十七 スプリアス発射又は不要発射の強度(スプリアス領域)(2)

適用範囲:キャリアアグリゲーション技術を用いて連続する二の搬送波を同時に使用する装置に適 用する。

1 測定系統図

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

2 測定器の条件等

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

- 3 受験機器の状態
 - (1) キャリアアグリゲーション技術を用いて、連続する二の搬送波を同時に送信する。
 - (2) その他は、「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

4 測定操作手順

(1) スペクトルアナライザの設定を 2 (2) とし、各掃引周波数幅毎に不要発射を探索する。 2, $535MHz\sim2$, 655MHzを探索する場合、(注1) の範囲を探索から除外する。 注1

チャネル間隔の組合せ

5 MH z と 5 MH z : 送信周波数帯域の中心周波数±19.7 MH z 未満5 MH z と 10 MH z : 送信周波数帯域の中心周波数±27.425 MH z 未満10 MH z と 10 MH z : 送信周波数帯域の中心周波数±34.85 MH z 未満5 MH z と 20 MH z : 送信周波数帯域の中心周波数±42.425 MH z 未満10 MH z と 20 MH z : 送信周波数帯域の中心周波数±49.85 MH z 未満20 MH z と 20 MH z : 送信周波数帯域の中心周波数±64.7 MH z 未満20 MH z と 20 MH z : 送信周波数帯域の中心周波数±64.7 MH z 未満

- (2) その他については「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。
- 5 結果の表示

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

6 その他の条件

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

十八 スプリアス発射又は不要発射の強度(スプリアス領域)(3)

適用範囲:キャリアアグリゲーション技術を用いて連続しない複数の搬送波を同時に使用する装置 に適用する。

1 測定系統図

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

2 測定器の条件等

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

- 3 受験機器の状態
 - (1) キャリアアグリゲーション技術を用いて、連続しない複数の搬送波を同時に送信する。

(2) その他は、「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

4 測定操作手順

「スプリアス発射又は不要発射の強度 (スプリアス領域) (1)」を参照すること。

5 結果の表示

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

6 その他の条件

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

十九 スプリアス発射又は不要発射の強度(スプリアス領域)(4)

適用範囲:一の搬送波を送信する送信装置(占有周波数帯幅の許容値が1.4MHzのもの)に適用する。

1 測定系統図

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

2 測定器の条件等

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。ただし、通信の相手方となる基地局のチャネル間隔と同じチャネル間隔に応じた条件を適用する。

3 受験機器の状態

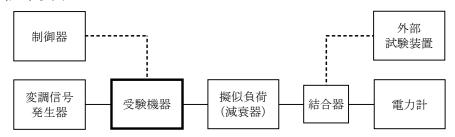
「スプリアス発射又は不要発射の強度 (スプリアス領域) (1)」を参照すること。

4 測定操作手順

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

5 結果の表示

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。


6 その他の条件

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

二十 空中線電力の偏差(1)

適用範囲:一の搬送波を使用する装置(占有周波数帯幅の許容値が2.5MHz以上のもの)に適用する。

1 測定系統図

2 測定器の条件等

- (1) 電力計の型式は、通常、熱電対もしくはサーミスタ等による熱電変換型又はこれらと同等 の性能を有するものとする。
- (2) 減衰器の減衰量は、電力計に最適動作入力レベルを与えるものとする。

3 受験機器の状態

- (1) 外部試験装置等から試験信号を加える。
- (2) 試験周波数及び最大出力に設定し、継続的バースト送信状態(注1) とする。 注1 送信バースト長を可変する場合は送信バースト時間が最も長い時間に設定する。

- (3) 電力制御を最大出力とし、最大出力状態となる変調状態とする。
- (4) 複数の空中線端子を有する場合は、それぞれの空中線端子ごとに電力制御を最大出力となるように設定する。

4 測定操作手順

- (1) 電力計の零調を行う。
- (2) 搬送波を送信する。
- (3)継続的なバースト波電力 (PB) を十分長い時間にわたり、電力計で測定する。
- (4) バースト内の平均電力 (P) を、次式により算出する。

 $P = PB \times (T/B)$

ここで、T=バースト周期

B=バースト長(送信バースト長の測定値)

(5) 複数の空中線端子を有する場合は、それぞれの空中線端子において測定する。

5 結果の表示

- (1) 結果は、空中線電力の測定値をW単位で、定格(工事設計書に記載される)の空中線電力に対する偏差を%単位で(+)又は(-)の符号をつけて表示する。
- (2) 複数の空中線端子を有する場合は、それぞれの空中線端子での測定値を真数で加算して表示する他、参考としてそれぞれの空中線端子の測定値も表示する。

6 その他の条件

- (1) 測定点は、送受信装置の出力端からアンテナ給電線の入力端の間のうち定格の空中線電力 を規定しているところとする。定格の空中線電力を規定しているところで測定できない場合 は、適当な測定端子で測定して換算する。
- (2) バースト時間率 (バースト長/バースト周期) のうち、バースト長は送信バースト長の試験項目で測定した値、バースト周期は工事設計書に記載される値を用いることとするが、疑義が生じた場合はスペクトルアナライザ等により確認する。
- (3) ダイバーシティ送信の場合は、一般事項7(9)を参照すること。

二十一 空中線電力の偏差(2)

適用範囲:キャリアアグリゲーション技術を用いて連続する二の搬送波を同時に使用する装置に適 用する。

1 測定系統図

「空中線電力の偏差(1)」を参照すること。

2 測定器の条件等

「空中線電力の偏差(1)」を参照すること。

3 受験機器の状態

- (1) キャリアアグリゲーション技術を用いて、連続する二の搬送波を同時に送信する。
- (2) その他は、「空中線電力の偏差(1)」を参照すること。

4 測定操作手順

- (1)「空中線電力の偏差(1)」を参照すること。
- (2) 連続する二の搬送波の空中線電力の総和を求める。

5 結果の表示

- (1)「空中線電力の偏差(1)」を参照すること。
- (2) 複数の搬送波の総和を求めたときは、測定値の総和の他、各空中線端子の測定値を表示する。

6 その他の条件

「空中線電力の偏差(1)」を参照すること。

二十二 空中線電力の偏差(3)

適用範囲:キャリアアグリゲーション技術を用いて連続しない複数の搬送波を同時に使用する装置 に適用する。

1 測定系統図

「空中線電力の偏差(1)」を参照すること。

2 測定器の条件等

「空中線電力の偏差(1)」を参照すること。

3 受験機器の状態

- (1) キャリアアグリゲーション技術を用いて、連続しない複数の搬送波を同時に送信する。
- (2) その他は、「空中線電力の偏差(1)」を参照すること。

4 測定操作手順

- (1)「空中線電力の偏差(1)」を参照すること。
- (2) 複数の搬送波の空中線電力の総和を求める。

5 結果の表示

- (1)「空中線電力の偏差(1)」を参照すること。
- (2) 複数の搬送波の総和を求めたときは、測定値の総和の他、各空中線端子の測定値を表示する。

6 その他の条件

「空中線電力の偏差(1)」を参照すること。

二十三 空中線電力の偏差(4)

適用範囲:一の搬送波を送信する送信装置(占有周波数帯幅の許容値が1.4MHzのもの)に適 用する。

1 測定系統図

「空中線電力の偏差(1)」を参照すること。

2 測定器の条件等

「空中線電力の偏差(1)」を参照すること。

3 受験機器の状態

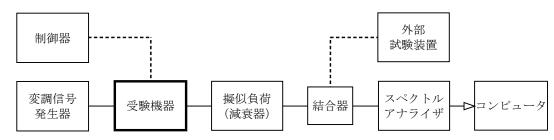
「空中線電力の偏差(1)」を参照すること。

4 測定操作手順

「空中線電力の偏差(1)」を参照すること。

5 結果の表示

「空中線電力の偏差(1)」を参照すること。


6 その他の条件

「空中線電力の偏差(1)」を参照すること。

二十四 隣接チャネル漏洩電力(1)

適用範囲:一の搬送波を使用する装置(占有周波数帯幅の許容値が2.5MHz以上のもの)に適用する。

1 測定系統図

2 測定器の条件等

(1) チャネル間隔が2. $5\,\mathrm{MHz}$ 、 $5\,\mathrm{MHz}$ 、 $10\,\mathrm{MHz}$ 及び $20\,\mathrm{Mz}$ の場合の隣接チャネル漏洩電力測定時のスペクトルアナライザの設定は次のようにする。

中心周波数 測定操作手順に示す周波数

掃引周波数幅 2.5MHz、5MHz、10MHz又は20MHz(注1)

分解能帯域幅30kHzビデオ帯域幅100kHz

掃引時間 測定精度が保証される最小時間(注2)

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数400点以上掃引モード連続掃引

検波モード ポジティブピーク 表示モード マックスホールド

掃引回数 スペクトルの変動が無くなる程度の回数

注1 チャネル間隔と離調周波数により、以下の通りとする。

チャネル間隔が2.5MHzのもの

離調周波数 : 搬送波周波数±2.5MHz

掃引周波数幅 : 2.5MHz

チャネル間隔が 5 MHz のもの

離調周波数 : 搬送波周波数±5MHz

掃引周波数幅:5 MH zチャネル間隔が10 MH z のもの

離調周波数 : 搬送波周波数±10MHz

掃引周波数幅 : 10MHz

チャネル間隔が20MHzのもの

離調周波数 : 搬送波周波数±20MHz

掃引周波数幅 : 20MHz

注2 (データ点数×バースト周期)以上とする。

3 受験機器の状態

- (1) 外部試験装置等により試験信号を加える。
- (2)試験周波数に設定し、バースト送信状態(注3)とする。
 - 注3 送信バースト長を可変する場合は送信バースト時間が最も短い時間に設定する。
- (3) 電力制御を最大出力とし、変調符号は、標準符号化試験信号で変調する。標準符号化試験 信号に設定できない場合は、通常運用状態において占有周波数帯幅が最大となる変調符号に する。
- (4) 複数の空中線端子を有する場合は、それぞれの空中線端子ごとに電力制御を最大出力として測定するほか、実運用状態で空中線電力の総和が最大となる状態として同時に送信状態と

なる全ての空中線端子を結合して測定する。

4 測定操作手順

- (1) スペクトルアナライザを2(1) のように設定する。
- (2) 搬送波電力 (PC) の測定
 - ア 搬送波周波数を中心周波数にして掃引する。
 - イ 全データ点の値をコンピュータの配列変数に取り込む。
 - ウ 全データについて、d B値を電力次元の真数に変換する。
 - エ 全データの電力総和を求め、これをPC とする。
- (3) 上側隣接チャネル漏洩電力(PU)の測定
 - ア 搬送波周波数+2.5MHz、+5MHz、+10MHz又は+20MHz(注3)を 中心周波数にして掃引する。
 - イ 全データ点の値をコンピュータの配列変数に取り込む。
 - ウ 全データについて、dB値を電力次元の真数に変換する。
 - エ 全データの電力総和を求め、これをPU とする。
- (4) 下側隣接チャネル漏洩電力 (PL) の測定
 - ア 搬送波周波数 $-2.5 \, \text{MHz}$ 、 $-5 \, \text{MHz}$ 、 $-10 \, \text{MHz}$ 又は $-20 \, \text{MHz}$ (注3)を中心周波数にして掃引する。
 - イ 全データ点の値をコンピュータの配列変数に取り込む。
 - ウ 全データについて、d B値を電力次元の真数に変換する。
 - エ 全データの電力総和を求め、これをPL とする。
 - 注4 チャネル間隔と離調周波数により、以下の通りとする。

チャネル間隔が2. 5MHzのもの

2. 5 MH z 離調 ± 1. 2 5 MH z 帯域内

チャネル間隔が 5 MHz のもの

5 MH z 離調 ± 2. 5 MH z 帯域内

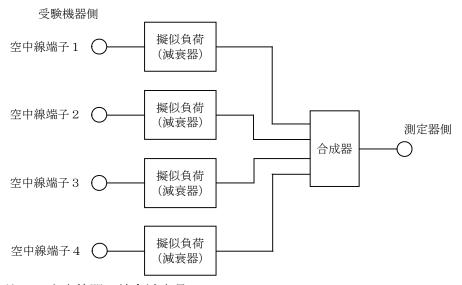
チャネル間隔が10MHzのもの

10MHz離調 ±5MHz帯域内

チャネル間隔が20MHzのもの

20MHz離調 ±10MHz帯域内

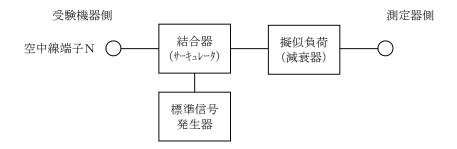
- (5) 複数の空中線端子を有する場合は、それぞれの空中線端子ごとに測定する。なお実運用状態で同時に送信状態となる全ての空中線端子を結合して測定してもよい。
- (6) 下記の式により隣接チャネル漏洩電力比を計算する。
 - ア 上側隣接チャネル漏洩電力比 10log (PU/PC)
 - イ 下側隣接チャネル漏洩電力比 10log (PL/PC)
- (7) 予め測定した空中線電力の測定値に上記の比を用いて絶対値を算出する。
- (8) 複数の空中線端子を有する場合は、それぞれの空中線端子の空中線電力に(6)で求めた比(dB)を減じて隣接チャネル漏洩電力の絶対値を求め真数で加算して総和を求める。


5 結果の表示

- (1)上側隣接チャネル漏洩電力及び下側隣接チャネル漏洩電力の測定値を、技術基準で規定する単位で離調周波数毎に表示する。
- (2) 複数の空中線を有する場合は、それぞれの空中線端子の空中線電力に4項で求めた比(dB)を減じて隣接チャネル漏洩電力の絶対値を求め真数で加算して総和を求める。隣接チャネル漏洩電力の総和をdBm単位で表示する他、参考としてそれぞれの空中線端子ごとの測定値も表示する。

(3) 一の送信装置から複数の搬送波を同時に発射する受験機器については、複数の搬送波を同時に発射した状態の測定結果についても上記(1)のように表示する。また、同時に発射する複数の搬送波の間の周波数幅が技術基準で規定される帯域幅に満たない場合は、測定帯域幅及び測定帯域幅換算値もあわせて表示する。

6 その他の条件


- (1) 2及び4の搬送波周波数は、割当周波数とする。
- (2) スペクトルアナライザのダイナミックレンジが不足する場合、搬送波と隣接チャネル漏洩 電力の相対測定において基準レベルを変更して測定する方法がある。ただしスペクトルアナ ライザに過大な信号が入力されないよう注意が必要である。
- (3) 複数の空中線端子を有する場合は、それぞれの空中線端子において測定する。
- (4) 5 (2) において、総和を表示することとしているが、それぞれの空中線端子の測定値が、許容値を空中線本数(注5) で除した値を超える場合において総和を求める。なお、全ての空中線端子において許容値を空中線本数で除した値を下回る場合は、それぞれの測定帯域において最大の測定値となる空中線端子の測定値に空中線本数を乗じた値を表示してもよい。
 - 注5 空中線本数は、同時に電波を発射する空中線の本数(ストリーム数等)であって、空間ダイバーシティ等で切り替える空中線の本数を含まない。
- (5) 複数の空中線端子を有する場合は、それぞれの空中線端子を合成器において接続して測定する。以下に空中線端子が4の場合の接続を示す。なお、各空中線の間の結合減衰量(注6) は12dBを標準とするが、運用状態の空中線配置における結合減衰量が書面により提出された場合は提出された値を用いる。

注6 空中線間の結合減衰量

上図における一例として空中線端子1と空中線端子2の結合量は、空中線端子3、空中線端子4及び測定器側の端子を終端した状態で空中線端子1に入力した信号レベルと空中線端子2で測定した値の差とする。

なお、提出された結合減衰量の設定が不可能な場合は、以下のように結合器を介して、他の空中線端子の出力レベル(総和)から結合減衰量を減じた値となる変調信号 (他の空中線から発射される信号と同等の信号)を標準信号発生器から入力して測定する。

二十五 隣接チャネル漏洩電力(2)

適用範囲:キャリアアグリゲーション技術を用いて連続する二の搬送波を同時に使用する装置に適 用する。

1 測定系統図

「隣接チャネル漏洩電力(1)」を参照すること。

2 測定器の条件等

スペクトルアナライザの設定は次のようにする。

中心周波数 (注1) 掃引周波数幅 (注1)

分解能帯域幅 30kHzビデオ帯域幅 100 kHz

掃引時間 測定精度が保証される最小時間(注2)

Y軸スケール 10dB/Div

最大のダイナミックレンジとなる値 入力レベル

データ点数 400点以上

掃引モード 連続掃引

検波モード ポジティブピーク 表示モード マックスホールド

スペクトルの変動が無くなる程度の回数 掃引回数

注1 チャネル間隔により、以下の通りとする。

チャネル間隔が5MHzと5MHzの組合せ

中心周波数

チャネル間隔が5MHzと10MHzの組合せ

中心周波数

送信周波数帯域の中心周波数±14.95MHz

送信周波数帯域の中心周波数±9.8MHz

チャネル間隔が10MHzと10MHzの組合せ

中心周波数

送信周波数帯域の中心周波数±19.9MHz

チャネル間隔が5MHzと20MHzの組合せ

中心周波数

送信周波数帯域の中心周波数±24.95MHz チャネル間隔が10MHzと20MHzの組合せ

中心周波数

送信周波数帯域の中心周波数±29.9MHz チャネル間隔が20MHzと20MHzの組合せ

掃引周波数幅

9.8MHz

掃引周波数幅

14.95MHz

掃引周波数幅

19.9MHz

掃引周波数幅

24.95MHz

掃引周波数幅

29.9MHz

送信周波数帯域の中心周波数±39.8MHz

注2 (データ点数×バースト周期)以上とする。

3 受験機器の状態

- (1) キャリアアグリゲーション技術を用いて、連続する二の搬送波を同時に送信する。
- (2) その他は「隣接チャネル漏洩電力(1)」を参照すること。

4 測定操作手順

「隣接チャネル漏洩電力(1)」を参照すること。ただし、スペクトラムアナライザの設定は、本試験項目の2項を適用し、「搬送波周波数」を「送信周波数帯幅の中心周波数」と読み替える。

5 結果の表示

「隣接チャネル漏洩電力(1)」を参照すること。

6 その他の条件

「隣接チャネル漏洩電力(1)」を参照すること。

二十六 隣接チャネル漏洩電力(3)

適用範囲:キャリアアグリゲーション技術を用いて連続しない複数の搬送波を同時に使用する装置 に適用する。

1 測定系統図

「隣接チャネル漏洩電力(1)」を参照すること。

2 測定器の条件等

「隣接チャネル漏洩電力(1)」を参照すること。

3 受験機器の状態

- (1) キャリアアグリゲーション技術を用いて、連続しない複数の搬送波を同時に送信する。
- (2) その他は「隣接チャネル漏洩電力(1)」を参照すること。

4 測定操作手順

- (1)「隣接チャネル漏洩電力(1)」を参照すること。
- (2) 同時に発射する複数の搬送波の間の周波数幅が技術基準で規定される帯域幅に満たない場合は、隣接チャネル漏洩電力(1)の4(3)ア及び(4)アの掃引周波数幅を搬送波の間の周波数幅として掃引し、(3)工及び(4)工において、(電力総和+測定帯域幅換算値(注1))をPU又はPLとする。

注1 (測定帯域幅換算值) =

1010g(技術基準で規定される帯域幅/測定帯域幅(注2))

注2 測定帯域幅:測定帯域幅は、通常、技術基準で規定される帯域幅として測定する。ただし、同時に発射する複数の搬送波の間の周波数が技術基準で規定される帯域幅に満たない場合は、搬送波の間の周波数幅を測定帯域幅とする。

5 結果の表示

「隣接チャネル漏洩電力(1)」を参照すること。

6 その他の条件

「隣接チャネル漏洩電力(1)」を参照すること。

二十七 隣接チャネル漏洩電力(4)

適用範囲:一の搬送波を送信する送信装置(占有周波数帯幅の許容値が1.4MHzのもの)に適 用する。

1 測定系統図

「隣接チャネル漏洩電力(1)」を参照すること。

2 測定器の条件等

「隣接チャネル漏洩電力 (1)」を参照すること。ただし、通信の相手方となる基地局のチャネル間隔と同じチャネル間隔に応じた条件を適用する。

3 受験機器の状態

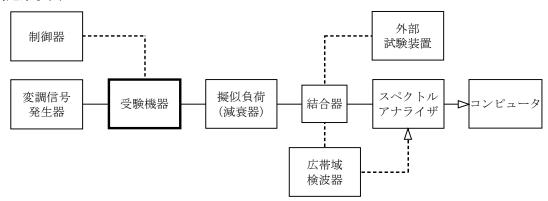
「隣接チャネル漏洩電力(1)」を参照すること。

4 測定操作手順

「隣接チャネル漏洩電力(1)」を参照すること。

5 結果の表示

「隣接チャネル漏洩電力(1)」を参照すること。


6 その他の条件

「隣接チャネル漏洩電力(1)」を参照すること。

二十八 搬送波を送信していないときの電力(1)

適用範囲:一の搬送波を使用する装置(占有周波数帯幅の許容値が2.5MHz以上のもの)に適用する。

1 測定系統図

2 測定器の条件等

- (1) 測定対象が低レベルのため擬似負荷(減衰器)の減衰量はなるべく低い値とする。ただし、スペクトルアナライザの最大許容入力レベルに注意する。
- (2)漏洩電力測定時のスペクトルアナライザは以下のように設定する。

掃引周波数幅 2,545MHz~2,655MHz

分解能帯域幅 1MHz

ビデオ帯域幅 分解能帯域幅の3倍程度

掃引時間 測定精度が保証される最小時間

Y軸スケール 10dB/Div

データ点数 400点以上

掃引モード単掃引検波モードRMS

(3)漏洩電力測定時のスペクトルアナライザは以下のように設定する。

中心周波数 搬送波周波数

掃引周波数幅 OHz

分解能帯域幅 占有周波数帯幅の許容値以上

ビデオ帯域幅 分解能帯域幅の3倍程度

掃引時間 測定精度が保証される最小時間

Y軸スケール 10dB/Div

データ点数 400点以上

掃引モード 単掃引 検波モード RMS

3 受験機器の状態

- (1) 外部試験装置等により試験信号を加える。
- (2) 試験周波数に設定し、バースト送信状態(注1)とする。 注1 送信バースト長を可変する場合は送信バースト時間が最も長い時間に設定する。
- (3) 電力制御を最大出力とし、最大出力状態となる変調をかける。
- (4) 複数の空中線端子を有する場合は、それぞれの空中線端子ごとに電力制御を最大出力となるように設定する。

4 測定操作手順

- (1) 広帯域検波器等によりスペクトルアナライザに外部トリガをかけ搬送波を送信していない時間を測定できるようにトリガ条件を設定し、スペクトルアナライザを2(2) のように設定し掃引する。
 - ア 掃引が終了したとき、全データ点の値をコンピュータの配列変数に取り込む。
 - イ 全データについて、dBm値を電力次元の真数に変換する。
 - ウ イで変換された電力次元の真数データを、全データ点数について加算する。それをその 区間のデータ点数で除し平均電力を求める。これを測定分解能帯域幅(等価雑音電力帯域 幅)で除して平均電力密度(W/H $_{\rm Z}$)を求め、これに掃引周波数幅(1 1 0 MH $_{\rm Z}$)を乗じる。
- (2) 上記の方法にかかわらず、搬送波を送信しないときの電力が占有周波数帯幅内の漏洩電力の最大レベルに対し、他の送信帯域内の最大レベルが20dB以上低い場合又は、許容値から20dB以上低い場合であって、分解能帯域幅を占有周波数帯幅の許容値以上に設定できるスペクトルアナライザを用いる場合は、2(3)のように設定し、搬送波オンのレベルと搬送波オフ時間において最大となるレベルの比を空中線電力に乗じて搬送波オフ時の漏洩電力を求めてもよい。
- (3) 複数の空中線端子を有する場合は、それぞれの空中線端子において測定する。

5 結果の表示

- (1) 結果は、送信帯域内の総電力をdBm単位で表示する。
- (2) 複数の空中線端子を有する場合は、それぞれの空中線端子での測定値を真数で加算して表示する他、参考としてそれぞれの空中線端子の測定値も表示する。

6 その他の条件

- (1) スペクトルアナライザの感度が足りない場合は、低雑音増幅器等を使用する。
- (2) 外部又は内部トリガを用いたタイムゲート機能を有する高周波電力計を使用してもよい。

二十九 搬送波を送信していないときの電力(2)

適用範囲:キャリアアグリゲーション技術を用いて連続する二の搬送波を同時に使用する装置に適 用する。

1 測定系統図

「搬送波を送信していないときの電力(1)」を参照すること。

2 測定器の条件等

「搬送波を送信していないときの電力(1)」を参照すること。

3 受験機器の状態

- (1) キャリアアグリゲーション技術を用いて、連続する二の搬送波を同時に送信する。
- (2) その他は、「搬送波を送信していないときの電力(1)」を参照すること。

4 測定操作手順

- (1)「搬送波を送信していないときの電力(1)」を参照すること。
- (2)「搬送波を送信していないときの電力(1)」の4(2)を適用する場合は、各搬送波について測定を行うこと。

5 結果の表示

「搬送波を送信していないときの電力(1)」を参照すること。

6 その他の条件

「搬送波を送信していないときの電力(1)」を参照すること。

三十 搬送波を送信していないときの電力(3)

適用範囲:キャリアアグリゲーション技術を用いて連続しない複数の搬送波を同時に使用する装置 に適用する。

1 測定系統図

「搬送波を送信していないときの電力(1)」を参照すること。

2 測定器の条件等

「搬送波を送信していないときの電力(1)」を参照すること。

- 3 受験機器の状態
 - (1) キャリアアグリゲーション技術を用いて、連続しない複数の搬送波を同時に送信する。
 - (2) その他は、「搬送波を送信していないときの電力(1)」を参照すること。

4 測定操作手順

- (1)「搬送波を送信していないときの電力(1)」を参照すること。
- (2)「搬送波を送信していないときの電力(1)」の4(2)を適用する場合は、各搬送波について測定を行うこと。
- 5 結果の表示

「搬送波を送信していないときの電力(1)」を参照すること。

6 その他の条件

「搬送波を送信していないときの電力(1)」を参照すること。

三十一 搬送波を送信していないときの電力(4)

適用範囲:一の搬送波を送信する送信装置(占有周波数帯幅の許容値が1.4MHzのもの)に適 用する。

1 測定系統図

「搬送波を送信していないときの電力(1)」を参照すること。

2 測定器の条件等

「搬送波を送信していないときの電力(1)」を参照すること。ただし、通信の相手方となる基 地局のチャネル間隔と同じチャネル間隔に応じた条件を適用する。

3 受験機器の状態

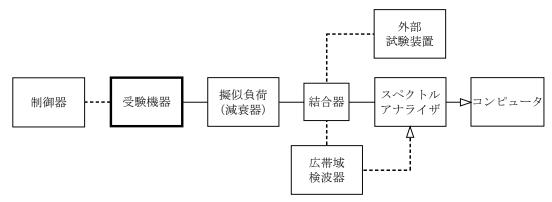
「搬送波を送信していないときの電力(1)」を参照すること。

4 測定操作手順

「搬送波を送信していないときの電力(1)」を参照すること。

5 結果の表示

「搬送波を送信していないときの電力(1)」を参照すること。


6 その他の条件

「搬送波を送信していないときの電力(1)」を参照すること。

三十二 副次的に発する電波等の限度(1)

適用範囲:一の搬送波を受信する受信装置(送信時において一の搬送波の占有周波数帯幅の許容値が2.5MHz以上のもの)に適用する。

1 測定系統図

2 測定器の条件等

- (1) 測定対象が低レベルのため擬似負荷(減衰器)の減衰量はなるべく低い値とする。ただし、連続受信状態にできない受験機器の場合は、スペクトルアナライザの最大許容入力レベルに注意する。
- (2) 副次発射探索時のスペクトルアナライザは以下のように設定する。

掃引周波数幅 (注1) 分解能帯域幅 (注1)

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される最小時間

 Y軸スケール
 10dB/Div

 データ点数
 400点以上

掃引モード 単掃引

検波モード ポジティブピーク

注1 副次発射探索時の設定は以下の通りとする。副次発射測定時の分解能帯域幅は、測定する不要発射周波数が以下の周波数で示した分解能帯域幅に設定する。

掃引周波数幅 : 9kHz~ 150kHz

分解能帯域幅 : 1 k H z

掃引周波数幅 : 150kHz~ 30MHz

分解能帯域幅 : 10kHz

掃引周波数幅 : 30MHz~1,000MHz

分解能帯域幅 : 100kHz

掃引周波数幅 : 1, 000MHz~13.5GHz

分解能帯域幅 : 1 MHz

(3) 副次発射測定時のスペクトルアナライザは以下のように設定する。

中心周波数 測定する副次発射周波数(探索された周波数)

掃引周波数幅 O H z 分解能帯域幅 (注1)

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される最小時間

Y軸スケール 10dB/Div

データ点数 400点以上

掃引モード単掃引検波モードRMS

3 受験機器の状態

(1) 制御器等を用いて受験機器の送信を停止し試験周波数を連続受信する状態とする。

(2) 連続受信状態にできない場合は、外部試験装置等より試験信号を加え、試験周波数に設定して、バースト時間率(注2)を一定とした継続的送受信状態とする。

注2 バースト時間率は(電波を発射している時間/バースト繰返し周期)とする。

4 測定操作手順

- (1) スペクトルアナライザの設定を 2 (2) とし、 9 k H z から 1 3. 5 G H z まで掃引して 技術基準の異なる帯域ごとに副次発射の振幅の最大値を探索する。
- (2)連続受信状態にできない場合は、(1)において、広帯域検波器等によりスペクトルアナライザに外部トリガをかけ受信状態の時間を測定できるようにトリガ条件を設定する。
- (3) 探索した結果が許容値以下の場合、探索値を測定値とする。
- (4) 探索した結果が許容値を超えた場合スペクトルアナライザの中心周波数の設定精度を高めるため、周波数掃引幅を100MHz、10MHz及び1MHzのように分解能帯域幅の10倍程度まで順次狭くして、副次発射の周波数を求める。次に、スペクトルアナライザの設定を上記2(3)とし、平均化処理を行う。副次発射がバースト状の場合はバースト内平均電力を測定する。
- (5) 複数の空中線端子を有する場合は、それぞれの空中線端子において測定する。

5 結果の表示

- (1) 結果は、技術基準が異なる各帯域ごとに副次発射の最大値の1波を技術基準で定められる 単位で周波数とともに表示する。
- (2) 複数の空中線端子を有する場合は、それぞれの空中線端子の測定値において各周波数ごと (参照帯域幅内)における総和を技術基準で定められる単位で周波数とともに表示する他、 参考としてそれぞれの空中線端子ごとに最大の1波を技術基準で定められる単位で周波数と ともに表示する。

6 その他の条件

- (1) 2 (2) において、副次発射の探索周波数範囲は9kHzから13.5GHzまでとしているが、平成16年総務省告示第88号(特性試験の試験方法を定める件)の附則において、この告示の施行の日から当分の間、スプリアス領域における不要発射の強度の測定を行う周波数範囲の下限周波数を30MHzとしているので、これを準用してもよい。ただし疑義がある場合はこの周波数範囲を超えて測定を行う。
- (2) スペクトルアナライザの感度が足りない場合は、低雑音増幅器等を使用する。
- (3) スペクトルアナライザのY軸スケールの絶対値を電力計及び信号発生器を使用して確認すること。
- (4) 4 (4) におけるバースト内平均電力とは、受信状態において副次発射がバースト状に発射される場合の、副次発射のバースト内平均電力である。
- (5) 3 (2) のように連続受信状態にできない受験機器の場合は、スペクトルアナライザに過 大入力が入らないように振幅制限器等を用いて測定してもよい。
- (6) 3 (2) のように連続受信状態にできないものについては、受験機器の間欠受信周期を最 短に設定して、測定精度が保証されるように副次発射探索時のスペクトルアナライザの掃引

時間を、少なくとも1サンプル当たり1周期以上とする必要がある。

- (7) 5 (2) において、各周波数ごとにおける総和を表示することとしているが、それぞれの空中線端子の測定値が、許容値を空中線本数(注3) で除した値を超える周波数において1 MHz帯域内の値の総和を求める。なお、全ての空中線端子において許容値を空中線本数で除した値を下回る場合は、それぞれの測定帯域において最大の測定値となる空中線端子の測定値に空中線本数を乗じた値を表示してもよい。
 - 注3 空中線本数は、同時に電波を発射する空中線の本数(ストリーム数等)であって、空間ダイバーシティ等で切り替える空中線の本数を含まない。
- (8) 複数の空中線端子を有する場合であっても、ダイバーシティ等で同時に受信回路に接続されない空中線選択方式の場合は、選択された空中線端子を測定することとし、同時に受信回路に接続される空中線端子のみの測定でよい。ただし、空中線端子によって測定値が異なることが懸念される場合や切り替えで受信回路に接続されない空中線端子からの発射が懸念される場合は省略してはならない。

三十三 副次的に発する電波等の限度(2)

適用範囲:一の搬送波を受信する受信装置(送信時において一の搬送波の占有周波数帯幅の許容値が1.4MHzのもの)に適用する。

1 測定系統図

「副次的に発する電波等の限度(1)」を参照すること。

2 測定器の条件等

「副次的に発する電波等の限度(1)」を参照すること。

3 受験機器の状態

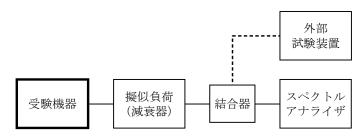
「副次的に発する電波等の限度(1)」を参照すること。

4 測定操作手順

「副次的に発する電波等の限度(1)」を参照すること。

5 結果の表示

「副次的に発する電波等の限度(1)」を参照すること。


6 その他の条件

「副次的に発する電波等の限度(1)」を参照すること。

三十四 送信バースト長(1)

適用範囲:一の搬送波を使用する装置(占有周波数帯幅の許容値が2.5MHz以上のもの)に適用する。

1 測定系統図

2 測定器の条件等

スペクトルアナライザの設定は次のとおりとする。

 中心周波数
 試験周波数

 掃引周波数幅
 0 H z

分解能帯域幅 占有周波数帯幅の許容値以上

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される時間

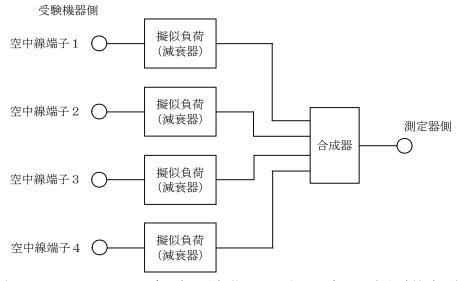
Y軸スケール10dB/Div検波モードポジティブピークトリガ条件レベル立ち上がり

3 受験機器の状態

(1) 試験周波数で、受信状態から電波を発射する状態にする。

(2) 運用状態において 2. 5 m s 、 5 m s 及び 1 0 m s と複数の送信バースト繰り返し周期を有し送信バースト長を可変するものは、各繰り返し周期毎に各バースト長に設定する。

4 測定操作手順


- (1) スペクトルアナライザの設定を上記2の状態とし、トリガ条件を立ち上がりトリガに設定し、受験機器を電波発射状態にする。
- (2) 複数の空中線端子を有する場合は、それぞれの空中線端子出力を合成し(6 その他の条件を参照)一の空中線が電波を発射開始してから全ての空中線が電波の発射を終了するまでを測定する。

5 結果の表示

技術基準の値を満足する場合は良、それ以外は否で表示する他、測定値をm s 単位で表示する。

6 その他の条件

- (1) 2 において分解能帯域幅を占有周波数帯幅の許容値以上としているが、許容値に対し1 0 μ s 以上余裕がある場合であって、全サブキャリアにおいて継続して電波の発射ができる場合は、分解能帯域幅を 1 MH z 程度まで狭くして測定してもよい。
- (2) 複数の空中線端子を有する場合は、それぞれの空中線端子を合成器において接続して測定する。以下に空中線端子が4の場合の接続を示す。

(3) スペクトルアナライザの時間分解能が不足する場合は、広帯域検波器等を用いオシロスコープ又は周波数カウンタをパルス幅測定状態に設定して測定してもよい。